i've been studying for over 2 weeks a simple example of A* pathfinding, not an ideal example for a complex terrain map(coz it uses a grid array for the coordinates) but it helps me somewhat to understand how to implement A* and integrate it with ogre 3d, i found a sample in this address : http://www.danielsoltyka.com/portfolio/ ... nstration/, and downloaded the VS file...so as i said for about 2 weeks ive been trying to understand it but im in doubt in some parts of it, parts which uses operator overloading methods and also templates, im still a newbie in c++ besides the fact that i already learned a lot from tutorials, hundreds of them btw.... sooo lets go straight to the point ...
we have this header file called : stlastar.h which holds the following code:
Code: Select all
/*
A* Algorithm Implementation using STL is
Copyright (C)2001-2005 Justin Heyes-Jones
Permission is given by the author to freely redistribute and
include this code in any program as long as this credit is
given where due.
COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE
IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE COVERED CODE IS WITH YOU. SHOULD ANY COVERED
CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL
DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY
NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF
WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE
OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
THIS DISCLAIMER.
Use at your own risk!
*/
#pragma once
// used for text debugging
#include <iostream>
#include <stdio.h>
//#include <conio.h>
#include <assert.h>
// stl includes
#include <algorithm>
#include <set>
#include <vector>
//using namespace std;
// fast fixed size memory allocator, used for fast node memory management
#include "fsa.h"
// Fixed size memory allocator can be disabled to compare performance
// Uses std new and delete instead if you turn it off
#define USE_FSA_MEMORY 1
// disable warning that debugging information has lines that are truncated
// occurs in stl headers
#pragma warning( disable : 4786 )
// The AStar search class. UserState is the users state space type
template <class UserState> class AStarSearch
{
public: // data
enum
{
SEARCH_STATE_NOT_INITIALISED,
SEARCH_STATE_SEARCHING,
SEARCH_STATE_SUCCEEDED,
SEARCH_STATE_FAILED,
SEARCH_STATE_OUT_OF_MEMORY,
SEARCH_STATE_INVALID
};
// A node represents a possible state in the search
// The user provided state type is included inside this type
public:
class Node
{
public:
Node *parent; // used during the search to record the parent of successor nodes
Node *child; // used after the search for the application to view the search in reverse
float g; // cost of this node + it's predecessors
float h; // heuristic estimate of distance to goal
float f; // sum of cumulative cost of predecessors and self and heuristic
Node() :
parent( 0 ),
child( 0 ),
g( 0.0f ),
h( 0.0f ),
f( 0.0f )
{
}
UserState m_UserState;
};
// For sorting the heap the STL needs compare function that lets us compare
// the f value of two nodes
class HeapCompare_f
{
public:
bool operator() ( const Node *x, const Node *y ) const
{
return x->f > y->f;
}
};
public: // methods
// constructor just initialises private data
AStarSearch( int MaxNodes = 1000 ) :
m_AllocateNodeCount(0),
#if USE_FSA_MEMORY
m_FixedSizeAllocator( MaxNodes ),
#endif
m_State( SEARCH_STATE_NOT_INITIALISED ),
m_CurrentSolutionNode( NULL ),
m_CancelRequest( false )
{
}
// call at any time to cancel the search and free up all the memory
void CancelSearch()
{
m_CancelRequest = true;
}
// Set Start and goal states
void SetStartAndGoalStates( UserState &Start, UserState &Goal )
{
m_CancelRequest = false;
m_Start = AllocateNode();
m_Goal = AllocateNode();
assert((m_Start != NULL && m_Goal != NULL));
m_Start->m_UserState = Start;
m_Goal->m_UserState = Goal;
m_State = SEARCH_STATE_SEARCHING;
// Initialise the AStar specific parts of the Start Node
// The user only needs fill out the state information
m_Start->g = 0;
m_Start->h = m_Start->m_UserState.GoalDistanceEstimate( m_Goal->m_UserState );
m_Start->f = m_Start->g + m_Start->h;
m_Start->parent = 0;
// Push the start node on the Open list
m_OpenList.push_back( m_Start ); // heap now unsorted
// Sort back element into heap
push_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
// Initialise counter for search steps
m_Steps = 0;
}
// Advances search one step
unsigned int SearchStep()
{
// Firstly break if the user has not initialised the search
assert( (m_State > SEARCH_STATE_NOT_INITIALISED) &&
(m_State < SEARCH_STATE_INVALID) );
// Next I want it to be safe to do a searchstep once the search has succeeded...
if( (m_State == SEARCH_STATE_SUCCEEDED) ||
(m_State == SEARCH_STATE_FAILED)
)
{
return m_State;
}
// Failure is defined as emptying the open list as there is nothing left to
// search...
// New: Allow user abort
if( m_OpenList.empty() || m_CancelRequest )
{
FreeAllNodes();
m_State = SEARCH_STATE_FAILED;
return m_State;
}
// Incremement step count
m_Steps ++;
// Pop the best node (the one with the lowest f)
Node *n = m_OpenList.front(); // get pointer to the node
pop_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
m_OpenList.pop_back();
// Check for the goal, once we pop that we're done
if( n->m_UserState.IsGoal( m_Goal->m_UserState ) )
{
// The user is going to use the Goal Node he passed in
// so copy the parent pointer of n
m_Goal->parent = n->parent;
// A special case is that the goal was passed in as the start state
// so handle that here
if( false == n->m_UserState.IsSameState( m_Start->m_UserState ) )
{
FreeNode( n );
// set the child pointers in each node (except Goal which has no child)
Node *nodeChild = m_Goal;
Node *nodeParent = m_Goal->parent;
do
{
nodeParent->child = nodeChild;
nodeChild = nodeParent;
nodeParent = nodeParent->parent;
}
while( nodeChild != m_Start ); // Start is always the first node by definition
}
// delete nodes that aren't needed for the solution
FreeUnusedNodes();
m_State = SEARCH_STATE_SUCCEEDED;
return m_State;
}
else // not goal
{
// We now need to generate the successors of this node
// The user helps us to do this, and we keep the new nodes in
// m_Successors ...
m_Successors.clear(); // empty vector of successor nodes to n
// User provides this functions and uses AddSuccessor to add each successor of
// node 'n' to m_Successors
bool ret = n->m_UserState.GetSuccessors( this, n->parent ? &n->parent->m_UserState : NULL );
if( !ret )
{
typename vector< Node * >::iterator successor;
// free the nodes that may previously have been added
for( successor = m_Successors.begin(); successor != m_Successors.end(); successor ++ )
{
FreeNode( (*successor) );
}
m_Successors.clear(); // empty vector of successor nodes to n
// free up everything else we allocated
FreeAllNodes();
m_State = SEARCH_STATE_OUT_OF_MEMORY;
return m_State;
}
// Now handle each successor to the current node ...
for( typename vector< Node * >::iterator successor = m_Successors.begin(); successor != m_Successors.end(); successor ++ )
{
// The g value for this successor ...
float newg = n->g + n->m_UserState.GetCost( (*successor)->m_UserState );
// Now we need to find whether the node is on the open or closed lists
// If it is but the node that is already on them is better (lower g)
// then we can forget about this successor
// First linear search of open list to find node
typename vector< Node * >::iterator openlist_result;
for( openlist_result = m_OpenList.begin(); openlist_result != m_OpenList.end(); openlist_result ++ )
{
if( (*openlist_result)->m_UserState.IsSameState( (*successor)->m_UserState ) )
{
break;
}
}
if( openlist_result != m_OpenList.end() )
{
// we found this state on open
if( (*openlist_result)->g <= newg )
{
FreeNode( (*successor) );
// the one on Open is cheaper than this one
continue;
}
}
typename vector< Node * >::iterator closedlist_result;
for( closedlist_result = m_ClosedList.begin(); closedlist_result != m_ClosedList.end(); closedlist_result ++ )
{
if( (*closedlist_result)->m_UserState.IsSameState( (*successor)->m_UserState ) )
{
break;
}
}
if( closedlist_result != m_ClosedList.end() )
{
// we found this state on closed
if( (*closedlist_result)->g <= newg )
{
// the one on Closed is cheaper than this one
FreeNode( (*successor) );
continue;
}
}
// This node is the best node so far with this particular state
// so lets keep it and set up its AStar specific data ...
(*successor)->parent = n;
(*successor)->g = newg;
(*successor)->h = (*successor)->m_UserState.GoalDistanceEstimate( m_Goal->m_UserState );
(*successor)->f = (*successor)->g + (*successor)->h;
// Remove successor from closed if it was on it
if( closedlist_result != m_ClosedList.end() )
{
// remove it from Closed
FreeNode( (*closedlist_result) );
m_ClosedList.erase( closedlist_result );
// Fix thanks to ...
// Greg Douglas <gregdouglasmail@gmail.com>
// who noticed that this code path was incorrect
// Here we have found a new state which is already CLOSED
// anus
}
// Update old version of this node
if( openlist_result != m_OpenList.end() )
{
FreeNode( (*openlist_result) );
m_OpenList.erase( openlist_result );
// re-make the heap
// make_heap rather than sort_heap is an essential bug fix
// thanks to Mike Ryynanen for pointing this out and then explaining
// it in detail. sort_heap called on an invalid heap does not work
make_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
}
// heap now unsorted
m_OpenList.push_back( (*successor) );
// sort back element into heap
push_heap( m_OpenList.begin(), m_OpenList.end(), HeapCompare_f() );
}
// push n onto Closed, as we have expanded it now
m_ClosedList.push_back( n );
} // end else (not goal so expand)
return m_State; // Succeeded bool is false at this point.
}
// User calls this to add a successor to a list of successors
// when expanding the search frontier
bool AddSuccessor( UserState &State )
{
Node *node = AllocateNode();
if( node )
{
node->m_UserState = State;
m_Successors.push_back( node );
return true;
}
return false;
}
// Free the solution nodes
// This is done to clean up all used Node memory when you are done with the
// search
void FreeSolutionNodes()
{
Node *n = m_Start;
if( m_Start->child )
{
do
{
Node *del = n;
n = n->child;
FreeNode( del );
del = NULL;
} while( n != m_Goal );
FreeNode( n ); // Delete the goal
}
else
{
// if the start node is the solution we need to just delete the start and goal
// nodes
FreeNode( m_Start );
FreeNode( m_Goal );
}
}
// Functions for traversing the solution
// Get start node
UserState *GetSolutionStart()
{
m_CurrentSolutionNode = m_Start;
if( m_Start )
{
return &m_Start->m_UserState;
}
else
{
return NULL;
}
}
// Get next node
UserState *GetSolutionNext()
{
if( m_CurrentSolutionNode )
{
if( m_CurrentSolutionNode->child )
{
Node *child = m_CurrentSolutionNode->child;
m_CurrentSolutionNode = m_CurrentSolutionNode->child;
return &child->m_UserState;
}
}
return NULL;
}
// Get end node
UserState *GetSolutionEnd()
{
m_CurrentSolutionNode = m_Goal;
if( m_Goal )
{
return &m_Goal->m_UserState;
}
else
{
return NULL;
}
}
// Step solution iterator backwards
UserState *GetSolutionPrev()
{
if( m_CurrentSolutionNode )
{
if( m_CurrentSolutionNode->parent )
{
Node *parent = m_CurrentSolutionNode->parent;
m_CurrentSolutionNode = m_CurrentSolutionNode->parent;
return &parent->m_UserState;
}
}
return NULL;
}
// For educational use and debugging it is useful to be able to view
// the open and closed list at each step, here are two functions to allow that.
UserState *GetOpenListStart()
{
float f,g,h;
return GetOpenListStart( f,g,h );
}
UserState *GetOpenListStart( float &f, float &g, float &h )
{
iterDbgOpen = m_OpenList.begin();
if( iterDbgOpen != m_OpenList.end() )
{
f = (*iterDbgOpen)->f;
g = (*iterDbgOpen)->g;
h = (*iterDbgOpen)->h;
return &(*iterDbgOpen)->m_UserState;
}
return NULL;
}
UserState *GetOpenListNext()
{
float f,g,h;
return GetOpenListNext( f,g,h );
}
UserState *GetOpenListNext( float &f, float &g, float &h )
{
iterDbgOpen++;
if( iterDbgOpen != m_OpenList.end() )
{
f = (*iterDbgOpen)->f;
g = (*iterDbgOpen)->g;
h = (*iterDbgOpen)->h;
return &(*iterDbgOpen)->m_UserState;
}
return NULL;
}
UserState *GetClosedListStart()
{
float f,g,h;
return GetClosedListStart( f,g,h );
}
UserState *GetClosedListStart( float &f, float &g, float &h )
{
iterDbgClosed = m_ClosedList.begin();
if( iterDbgClosed != m_ClosedList.end() )
{
f = (*iterDbgClosed)->f;
g = (*iterDbgClosed)->g;
h = (*iterDbgClosed)->h;
return &(*iterDbgClosed)->m_UserState;
}
return NULL;
}
UserState *GetClosedListNext()
{
float f,g,h;
return GetClosedListNext( f,g,h );
}
UserState *GetClosedListNext( float &f, float &g, float &h )
{
iterDbgClosed++;
if( iterDbgClosed != m_ClosedList.end() )
{
f = (*iterDbgClosed)->f;
g = (*iterDbgClosed)->g;
h = (*iterDbgClosed)->h;
return &(*iterDbgClosed)->m_UserState;
}
return NULL;
}
// Get the number of steps
int GetStepCount() { return m_Steps; }
void EnsureMemoryFreed()
{
#if USE_FSA_MEMORY
assert(m_AllocateNodeCount == 0);
#endif
}
private: // methods
// This is called when a search fails or is cancelled to free all used
// memory
void FreeAllNodes()
{
// iterate open list and delete all nodes
typename vector< Node * >::iterator iterOpen = m_OpenList.begin();
while( iterOpen != m_OpenList.end() )
{
Node *n = (*iterOpen);
FreeNode( n );
iterOpen ++;
}
m_OpenList.clear();
// iterate closed list and delete unused nodes
typename vector< Node * >::iterator iterClosed;
for( iterClosed = m_ClosedList.begin(); iterClosed != m_ClosedList.end(); iterClosed ++ )
{
Node *n = (*iterClosed);
FreeNode( n );
}
m_ClosedList.clear();
// delete the goal
FreeNode(m_Goal);
}
// This call is made by the search class when the search ends. A lot of nodes may be
// created that are still present when the search ends. They will be deleted by this
// routine once the search ends
void FreeUnusedNodes()
{
// iterate open list and delete unused nodes
typename vector< Node * >::iterator iterOpen = m_OpenList.begin();
while( iterOpen != m_OpenList.end() )
{
Node *n = (*iterOpen);
if( !n->child )
{
FreeNode( n );
n = NULL;
}
iterOpen ++;
}
m_OpenList.clear();
// iterate closed list and delete unused nodes
typename vector< Node * >::iterator iterClosed;
for( iterClosed = m_ClosedList.begin(); iterClosed != m_ClosedList.end(); iterClosed ++ )
{
Node *n = (*iterClosed);
if( !n->child )
{
FreeNode( n );
n = NULL;
}
}
m_ClosedList.clear();
}
// Node memory management
Node *AllocateNode()
{
#if !USE_FSA_MEMORY
Node *p = new Node;
return p;
#else
Node *address = m_FixedSizeAllocator.alloc();
if( !address )
{
return NULL;
}
m_AllocateNodeCount ++;
Node *p = new (address) Node;
return p;
#endif
}
void FreeNode( Node *node )
{
m_AllocateNodeCount --;
#if !USE_FSA_MEMORY
delete node;
#else
m_FixedSizeAllocator.free( node );
#endif
}
private: // data
// Heap (simple vector but used as a heap, cf. Steve Rabin's game gems article)
std::vector< Node *> m_OpenList;
// Closed list is a vector.
std::vector< Node * > m_ClosedList;
// Successors is a vector filled out by the user each type successors to a node
// are generated
std::vector< Node * > m_Successors;
// State
unsigned int m_State;
// Counts steps
int m_Steps;
// Start and goal state pointers
Node *m_Start;
Node *m_Goal;
Node *m_CurrentSolutionNode;
#if USE_FSA_MEMORY
// Memory
FixedSizeAllocator<Node> m_FixedSizeAllocator;
#endif
//Debug : need to keep these two iterators around
// for the user Dbg functions
typename std::vector< Node * >::iterator iterDbgOpen;
typename std::vector< Node * >::iterator iterDbgClosed;
// debugging : count memory allocation and free's
int m_AllocateNodeCount;
bool m_CancelRequest;
};
Code: Select all
class HeapCompare_f
{
public:
bool operator() ( const Node *x, const Node *y ) const
{
return x->f > y->f;
}
};
and theres a couple more things im still in doubt which comes in the following code :
the file is a .cpp implementation file and holds the following code :
Code: Select all
//==========================================================================//
// Ogre A* Example - December 2009 //
// //
// Author: Daniel Soltyka //
// E-Mail: dsoltyka@gmail.com //
// //
// This example demonstrates the A* pathfinding algorithm in a 3D //
// environment. //
// //
// Modified A* routines based off of A* Algorithm Implementation using STL //
// by Justin Heyes-Jones. //
// //
// Original Routines can be found at http://www.heyes-jones.com/astar.html //
//==========================================================================//
#include "MapSearchNode.h"
MapSearchNode::MapSearchNode()
{
x = y = 0;
}
MapSearchNode::MapSearchNode( WorldMap* map )
{
mMap = map;
x = y = 0;
}
MapSearchNode::MapSearchNode( WorldMap* map, unsigned int px, unsigned int py ) : mMap(map)
{
x=px;
y=py;
}
// Compare this node against another node
bool MapSearchNode::IsSameState( MapSearchNode &rhs )
{
// same state in a maze search is simply when (x,y) are the same
if( (x == rhs.x) &&
(y == rhs.y) )
{
return true;
}
else
{
return false;
}
}
// Here's the heuristic function that estimates the distance from a Node
// to the Goal.
float MapSearchNode::GoalDistanceEstimate( MapSearchNode &nodeGoal )
{
float xd = fabs(float(((float)x - (float)nodeGoal.x)));
float yd = fabs(float(((float)y - (float)nodeGoal.y)));
return xd + yd;
}
// Test this node to see if it is the goal in our search
bool MapSearchNode::IsGoal( MapSearchNode &nodeGoal )
{
if( (x == nodeGoal.x) &&
(y == nodeGoal.y) )
{
return true;
}
return false;
}
// This generates the successors to the given Node. It uses a helper function called
// AddSuccessor to give the successors to the AStar class. The A* specific initialisation
// is done for each node internally, so here you just set the state information that
// is specific to the application
bool MapSearchNode::GetSuccessors( AStarSearch<MapSearchNode> *astarsearch, MapSearchNode *parent_node )
{
int parent_x = -1;
int parent_y = -1;
if( parent_node )
{
parent_x = parent_node->x;
parent_y = parent_node->y;
}
MapSearchNode NewNode;
// push each possible move except allowing the search to go backwards
if( (mMap->GetTile(x-1, y ) < 9)
&& !((parent_x == x-1) && (parent_y == y))
)
{
NewNode = MapSearchNode(mMap, x-1, y );
astarsearch->AddSuccessor( NewNode );
}
if( (mMap->GetTile(x, y-1 ) < 9)
&& !((parent_x == x) && (parent_y == y-1))
)
{
NewNode = MapSearchNode(mMap, x, y-1 );
astarsearch->AddSuccessor( NewNode );
}
if( (mMap->GetTile(x+1, y ) < 9)
&& !((parent_x == x+1) && (parent_y == y))
)
{
NewNode = MapSearchNode(mMap, x+1, y );
astarsearch->AddSuccessor( NewNode );
}
if( (mMap->GetTile(x, y+1 ) < 9)
&& !((parent_x == x) && (parent_y == y+1))
)
{
NewNode = MapSearchNode(mMap, x, y+1 );
astarsearch->AddSuccessor( NewNode );
}
return true;
}
// Given this node, what does it cost to move to successor. In the case
// of our map the answer is the map terrain value at this node since that is
// conceptually where we're moving
float MapSearchNode::GetCost( MapSearchNode &successor )
{
return (float) mMap->GetTile( x, y );
}
// Equal comparison between nodes
bool operator== (MapSearchNode &node1, MapSearchNode &node2)
{
return ((node1.x == node2.x) && (node1.y == node2.y));
}
bool operator!= (MapSearchNode &node1, MapSearchNode &node2)
{
return !(node1 == node2);
}
Code: Select all
bool operator== (MapSearchNode &node1, MapSearchNode &node2)
{
return ((node1.x == node2.x) && (node1.y == node2.y));
}
bool operator!= (MapSearchNode &node1, MapSearchNode &node2)
{
return !(node1 == node2);
and also in the same implementation file there is a template type function and i wonder if all the functions in this file enherits this template data in the MapSearchNode class and parameters...coz here we have the getCost (),getSuccessors(),GoalDistanceEstimate() and IsSameState() functions which corresponds to the same names as in the AStarSearch class in its header file but most of them dont make reference to the stlastar.h file , so my question is , does this function arguments: bool MapSearchNode::GetSuccessors( AStarSearch<MapSearchNode> *astarsearch, MapSearchNode *parent_node )
{}
also assign to the MapSearchNode class parameters the AStarSearch class data for all these functions ? getCost (),getSuccessors(),GoalDistanceEstimate() and IsSameState()????
sorry if the question is a bit confusing but i tried my best to formulate what i have in mind at the moment...
thx in advance and any help is greatly appreciated!!!
kind regards,
Romulo Romero